What laser vaporization cluster is
The laser vaporization cluster source has been used for the production of gas phase atomic clusters and metal-molecular complexes for 30 years. Numerous experiments in the chemistry and physics of clusters have employed this source. Its operation is simple in principle, but there are many subtle design features that influence the number and size of clusters produced, as well as their composition, charge state, and temperature. This article examines all aspects of the design of these cluster sources, discussing the relevant chemistry, physics, and mechanical aspects of experimental configurations employed by different labs. The principles detailed here provide a framework for the design and implementation of this source for new applications.
In the context of laser physics, clustering is the tendency of laser-active ions in a solid-state gain medium to form clusters rather than to be randomly spread. This is normally an undesirable effect, as it allows for energy transfer between laser ions which can seriously degrade the gain and power efficiency by processes which are called quenching. For example, this can occur in erbium-doped gain media with high erbium concentration (e.g. in some erbium-doped fiber amplifiers).
The simplest way to avoid laser cluster probe is to keep the doping concentration low. However, high doping concentrations are desirable in some situations, e.g. when a short fiber laser or amplifier must be constructed. In that case, it is important to select a host material with a high solubility of the dopant. For example, phosphate glasses allow for higher erbium concentrations without clustering, compared with silicate glasses.
For more details on this, please browse www.rj-laser.com .
Comments
Post a Comment